Concepts
The Glyphmine Knowledge Graph

The Knowledge Graph

Understanding GlyphNet's structured knowledge representation.

Overview

GlyphNet's knowledge graph is a structured database of concepts and their relationships:

┌─────────────────────────────────────────────────────────┐
│                   KNOWLEDGE GRAPH                       │
├─────────────────────────────────────────────────────────┤
│  30,000+ Concepts                                       │
│  80,000+ Relations                                      │
│  10 Canonical Relation Types                            │
│  384-dimensional Embeddings                             │
└─────────────────────────────────────────────────────────┘

Concepts

A concept is a node in the graph representing a distinct entity or idea:

┌──────────────────────────────────────┐
│  Concept: "chair"                    │
├──────────────────────────────────────┤
│  ID: G-00142                         │
│  Type: PhysicalObject                │
│  Definition: A piece of furniture    │
│              designed for sitting    │
│  Embedding: [0.12, -0.34, ...]       │
└──────────────────────────────────────┘

Concept Types

TypeDescriptionExamples
PhysicalObjectTangible itemschair, car, book
AbstractConceptIdeas and conceptsjustice, time, love
ActionVerbs and activitiesrun, build, think
PropertyAttributesred, heavy, fast
LocationPlacesParis, ocean, kitchen
OrganizationGroupsGoogle, UN, NASA
PersonIndividualsEinstein, Shakespeare
EventOccurrencesWorld War II, Olympics

Relations

Relations are typed edges connecting concepts:

      [chair]

    ┌────┴────┬─────────┬──────────┐
    │ is_a    │ has_part│ made_of  │ affords_action
    ▼         ▼         ▼          ▼
[furniture] [legs]    [wood]     [sit]

The 10 Canonical Relations

RelationDescriptionExample
is_aType/categorydog is_a mammal
has_partComponentscar has_part engine
made_ofMaterial compositiontable made_of wood
requiresPrerequisitesfire requires oxygen
producesOutputs/effectstree produces oxygen
similar_toSemantic similaritycouch similar_to sofa
has_propertyAttributessnow has_property white
affords_actionPossible actionsball affords_action throw
typical_locationCommon placesfish typical_location water
semantic_relatedGeneral relationmusic semantic_related emotion

Relation Strength

Each relation has a strength value:

{
  "source": "chair",
  "target": "furniture",
  "relation": "is_a",
  "strength": "primary",
  "confidence": 0.98
}
StrengthConfidence RangeMeaning
primary0.90 - 1.00Definitive relationship
secondary0.70 - 0.89Strong relationship
tertiary0.50 - 0.69Moderate relationship
weak0.30 - 0.49Possible relationship

Graph Traversal

Verification uses graph traversal to find supporting evidence:

Direct Match

Claim: "Dogs are mammals"

Traversal:
  dog ──is_a──> mammal ✓

Result: Direct match, high confidence

Multi-Hop Inference

Claim: "Poodles are animals"

Traversal:
  poodle ──is_a──> dog ──is_a──> mammal ──is_a──> animal ✓

Result: 3-hop path, good confidence (decreases with hops)

Multiple Paths

Claim: "Water is essential for life"

Path 1: water ──requires──> life
Path 2: life ──requires──> water
Path 3: water ──produces──> hydration ──requires──> life

Result: Multiple supporting paths, very high confidence

Semantic Embeddings

Each concept has a 384-dimensional vector embedding:

# Conceptual representation
embeddings = {
    "dog": [0.12, -0.34, 0.56, ..., 0.23],    # 384 dims
    "cat": [0.11, -0.31, 0.52, ..., 0.21],    # Similar to dog
    "car": [-0.45, 0.67, -0.12, ..., 0.89],   # Very different
}

Similarity Computation

def cosine_similarity(a, b):
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
 
similarity("dog", "cat")    # 0.85 - related animals
similarity("dog", "puppy")  # 0.92 - very similar
similarity("dog", "car")    # 0.12 - unrelated

Graph Statistics

MetricValue
Total concepts30,000+
Total relations80,000+
Average connections per concept8.5
Maximum path depth6 hops
Embedding dimensions384

Knowledge Sources

The graph is built from:

  1. Curated Knowledge Bases

    • Structured encyclopedic content
    • Verified reference materials
    • Academic sources
  2. Quality-Controlled Expansion

    • AI-assisted generation with human review
    • Consistency validation
    • Cross-reference verification
  3. Ongoing Updates

    • Regular knowledge refreshes
    • Error corrections
    • Coverage expansion

Graph Quality Assurance

Validation Rules

Every concept must pass:

validation_rules = {
    "id_format": r"G-\d{5}",           # ID must be G-XXXXX
    "label_format": r"^[a-z_]+$",       # Lowercase with underscores
    "definition_length": (20, 500),     # 20-500 characters
    "min_relations": 1,                 # At least one relation
    "max_parts": 25,                    # Maximum 25 has_part relations
}

Consistency Checks

  • No circular is_a relationships
  • has_part relationships are acyclic
  • Symmetric relations are bidirectional
  • Confidence scores within valid range

Using Graph Information

Query Concept Details

response = requests.get(
    "https://api.glyphnet.io/v1/concepts/dog",
    headers={"X-API-Key": API_KEY}
)
 
concept = response.json()
# {
#   "id": "G-00089",
#   "label": "dog",
#   "type": "PhysicalObject",
#   "definition": "A domesticated carnivorous mammal...",
#   "relations": [
#     {"type": "is_a", "target": "mammal", "confidence": 0.98},
#     {"type": "has_part", "target": "tail", "confidence": 0.95},
#     ...
#   ]
# }

Find Related Concepts

response = requests.get(
    "https://api.glyphnet.io/v1/concepts/dog/related",
    headers={"X-API-Key": API_KEY},
    params={"relation": "is_a", "depth": 2}
)
 
related = response.json()
# ["mammal", "animal", "canine", "pet", ...]

Limitations

Coverage Gaps

  • Very specialized domains (advanced physics, rare diseases)
  • Recent events (< 30 days)
  • Fictional content (intentionally excluded)
  • Highly localized knowledge

Update Frequency

  • Core knowledge: Updated weekly
  • Trending topics: Updated daily
  • Breaking news: Not real-time